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Abstract

Facial micro-expressions are subtle involuntary move-

ments of the facial muscles, characterized by a rapid, short

duration and genuine emotions. The detection and classifi-

cation of these micro-expressions by humans and machines

is challenging due to their short duration and subtlety.These

micro-expressions have many important applications, es-

pecially in therapy, monitoring and depression analysis.

It has been shown that during therapy, the facial micro-

expressions of patients diagnosed with depression are very

difficult to identify and in most cases are very subtle. In this

paper, the primary focus is on recognition of facial micro-

expressions and to overcome the class imbalance of the

datasets. Firstly, a novel approach that uses multiple mag-

nified ratios of Eulerian motion magnification is applied to

the videos to extract the suppressed micro-expressions. Sec-

ondly, we remove the micro-expression frames with low tex-

tural variance and obtain the Emotion Avatar Image (EAI).

Finally, Deep Convolutional Neural Network (CNN) is used

to extract robust facial features from the motion magnified

EAI images. These features are classified into three different

classes: positive, negative and surprise. The approach is

evaluated on three spontaneous micro-expression datasets

SMIC, SAMM, and CASME II, and the results are compared

with the current approaches that show the effectiveness and

significance of the approach.

1. Introduction

Current Human Machine Interaction (HMI) systems

have yet to reach the full emotional and social capabilities

necessary for rich and robust interaction with human be-

ings. Facial expression, which plays a vital role in social

interaction, is one of the most important nonverbal channels

through which HMI systems can recognize humans internal

emotions. Ekman et al. [1]. identified six facial expressions

(anger, disgust, fear, happiness, sadness, and surprise) as

basic emotional expressions that are universal among hu-

man beings. Facial expressions are categorized into two

types, namely, facial macro-expressions and facial micro-

expressions. Facial micro-expressions are in the form of

brief and involuntary facial expressions that appear on a per-

son’s face according to the emotions being experienced and

last for less than 0.5 seconds [2], [3]. Micro-expressions

are very subtle and since they last for less than 0.5 seconds,

they are very difficult to detect and usually imperceptible to

the human eye [4].

Micro-expressions are rapid, subtle, brief and involun-

tary facial muscle movements in a real-time scenario. Since

these expressions can sustain only less than half a second

[5], micro-expression spotting and recognition becomes

very difficult for humans and machines. Micro-expression

has many potential applications in the field of lie-detection,

online-learning, security, health care and game-playing.

The micro-expression analysis consists of two main tasks,

spotting that helps in identifying the micro-expression and

recognition that aims in identifying the different classes of

micro-expressions. The main focus of this paper is to rec-

ognize the micro-expression and classify them into different

classes of emotions.

Analysis of facial micro-expressions plays a vital role in

the field of psychology and is widely used by clinical psy-

chologists and psychiatrists in assessing the mental health

of patients. According to a survey done in 2017 [6], 22.1%

of Americans aged 18 and older, about 1 in 5 adults suffer

from a diagnosable mental disorder. Clinical psychologists

treat such disorders by providing therapy that in many cases

is equally, if not more, effective than medication. Therapy is

a collaborative process between the patient and the clinical

psychologist, that helps understand the feelings and emo-

tions of an individual.

As of 2014, there are 106,500 licensed psychologists in

the USA and a full time clinical psychologists on average

handles 26 patients a week and each therapy session lasts

between 45-55 minutes [7]. Based on these statistics, there

is a huge demand for clinical psychologists and having an
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automated tool for detecting and classifying facial micro-

expressions will be very beneficial for the psychologists in

providing quality healthcare for the patients.

Apart from providing psychological therapy, detecting

and analysis of micro-expressions plays a vital role in the

treatment of diseases like schizophrenia and autism. Poor

social functioning is a disabling feature of schizophrenia.

Deficits in facial affect recognition is one feature of its poor

functioning, and these have been explored in a number of

studies [8], [9], [10]. Many empirical studies [11], [12], [13]

have also shown that engaging in one-on-one conversa-

tions and activities with autistic patients and observing their

micro-expressions helps in understanding their emotions

and, thus, provide better care for them. Thus, automatic

detection and classification of micro-expressions plays a vi-

tal role in assisting clinical psychologists and psychiatrists

in providing better healthcare for the patients.

To this end we propose an approach for automatic clas-

sification of facial micro-expressions using Convolutional

Neural Networks, Eulerian Motion Magnified (EMM)

videos, and avatar images. We perform data augmentation

by augmenting the training dataset with motion magnified

videos with different magnification factors. Experimental

results show that by augmenting the training dataset, we are

able to improve the classification accuracy and also outper-

form the state-of-the-art approaches. The rest of this paper

is organized as follows. We introduce the related works and

our contributions in Section 2. The approach for automatic

classification of facial micro-expressions is introduced in

Section 3. The experimental results and comparisons with

state-of-the-art approaches are presented in Section 4. Fi-

nally, Section 5 provides the conclusion.

2. Related Work

Classification of facial expressions is a very important

problem and has gained a lot of attention over the past few

years [14], [15], but there has been very limited work done

for the classification of micro-expressions. Zhao et al. [16]

used Local Binary Pattern with Three Orthogonal Planes

(LBP-TOP) to extract features for classification. LBP-TOP

is an extension of Local Binary Pattern (LBP), which helps

in distinguishing local texture feature information by trans-

lating a vector code into histograms. These histograms are

performed on each plane (XY, XT, YT) and finally concate-

nated into a single histogram feature making it robust to

illumination changes.

Davison et al. [17], proposed a temporal feature ex-

tractor, i.e. 3D Histogram of Oriented Gradient (3DHOG)

method, which extracts features in all three directions of

motion (XY, XT, YT). Liong et al. [18], proposed a new

technique to utilize only apex frame to recognize the micro-

expression. The feature extractor, Bi-Weighted Oriented

Optical Flow (Bi-WOOF) is used to enhance the apex frame

features.

After the entry of Krizhevsky et al. [19] in the Ima-

genet competition [20], state-of-the-art for feature extrac-

tion shifted towards CNNs. Khor et al. [21] proposed

a method called ELRCN, which uses handcrafted features

such as optical flow and optical strain, which is passed to a

CNN-LSTM architecture that extracts spatio-temporal fea-

tures and classified them using Support Vector Machines

(SVM).

Peng et al. [22] proposed a new approach called

Dual Temporal Scale Convolutional Neural Network

(DTSCNN), which is a two-stream 3-D CNN model. The

two streams of the framework were designed to accommo-

date different frame-rates of facial micro-expression videos.

Li et al. [23] used an approach to detect the apex frames

in the frequency domain to recognize the facial micro-

expressions and classify them based on the apex frame

acquisition. Similarly, Gan et al. [24] (OFF-ApexNet)

used a divide and conquer approach to identify the apex

frame. Based on the acquisition of the apex frame they

extracted optical flow features and further classified using

CNN. Wang et al. [25] used the Eulerian Motion Magnifi-

cation for recognizing the facial micro-expression.

The main problem in recognizing micro-expressions us-

ing CNN models is subtle behavior of micro-expressions

which makes it difficult to recognize. To overcome this

problem, we use Eulerian Motion Magnification (EMM)

to reduce the subtle behavior of facial micro-expressions.

The other problems associated in recognizing the facial

micro-expressions are lack of large datasets and the un-

balanced classes in these datasets that makes it difficult to

train CNNs efficiently. We perform data augmentation us-

ing different magnitudes of Eulerian Motion Magnification

(EMM) [26]. Moreover, by using different magnitudes of

motion magnifications (x5, x10, x15) and augment them to

the training dataset helps to reduce the problem of unbal-

ance dataset. Furthermore, in order to enhance the appear-

ance of the micro-expression, we use a low intensity ex-

pression remover that ignores frames in a video that have

very small variation in texture. Next, we compute the Emo-

tional Avatar image (EAI) proposed by Yang et al. [27] by

performing facial landmark alignment using OpenFace and

then averaging all the frames into a single image. The EAI

is a spatio-temporal representation of a video sequence that

registers the facial features at exact locations and maintains

the nonrigid facial muscle movement. The regions of the

face that are blurry in the EAI indicate the motion in the

video.

2.1. Contributions

• Automatic classification of facial micro-expressions

using CNNs and Emotional Avatar Image.

• Performed data augmentation using different magni-
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tudes of Eulerian motion magnification to overcome

the bias in the dataset.

• Comprehensive evaluation of the proposed approach

on three publicly available facial micro-expression

datasets.

• Comprehensive cross-dataset evaluation of the pro-

posed approach on three publicly available facial

micro-expression datasets.

3. Technical Approach

In this section, we present our proposed approach for fa-

cial micro-expression recognition as shown in Fig. 1. In

CASME II and SMIC dataset, the cropped faces were avail-

able from the sequence of video frames. Since the cropped

faces were not available in SAMM dataset, we used the

Constrained Local Model (CLM) [28] method and cropped

the faces.

3.1. Eulerian Motion Magnification

Eulerian motion magnification [26] exaggerates small

motions in videos by incorporating spatial and temporal

processing to highlight subtle facial micro-expression in a

video as shown in Fig. 2. The videos are first decomposed

into spatial frequency bands. The primary goal of process-

ing these bands spatially is to increase the temporal signal-

to-noise ratio by spatially applying a low-pass filter to the

frames of a video and downsampling the pixels for improv-

ing the computational efficiency.

The temporal processing is performed on each spatial

frequency band. A bandpass filter is applied to extract the

frequency band of interest. Finally, the extracted signal is

magnified by a factor of α.

The relationship between temporal processing of bands

and Eulerian motion magnification for a given image inten-

sity I(x, t) at position x and time t is expressed as:

Î{x, t} = f(x+ (1 + α)δ(t)) (1)

where δ(t) is the displacement function and α is the mag-

nification factor.

The first-order Taylor series expansion is applied on the

image at time t, f(x + δ(t)) about x as:

I(x, t) ≈ f(x) + δ(t)
∂(f(x))

∂(x)
(2)

Assuming the motion signal δ is within the frequency

range of passband of the bandpass filter. Thus, we have

B(x, t) = δ(t)
∂(f(x))

∂(x)
(3)

For the general case where δ(t) may not be entirely

within the passband of the temporal filter. Therefore, in this

case δk(t), represent the different spectral components of

δ(t). The value of δk(t) will be attenuated by the temporal

filtering factor γk(t). The resulting signal is shown below

in Eq.4.

B(x, t) =
∑

k

γkδk(t)
∂(f(x))

∂(x)
(4)

Solving equation 1, 2, and 3 we get,

Î{x, t} = f(x+ (1 +
∑

k

(1 + αk)δk(t)) (5)

where αk = γkα is the frequency dependent motion mag-

nification factor and δk is the temporal sub-band of the mo-

tion signal.

The proposed approach uses motion magnification factor

α = 10 to exaggerate the micro-expressions. The value of α

= 10 is selected based on [29], as the value of α increases,

the distortion and amplification of noise also increases.

3.1.1 Selection of Amplification Factor α

Selection of amplification factor α is very important for

the video motion magnification. As the value of α in-

creases, the distortion and amplification of noise also in-

creases which causes artifacts in the video. Fig.3 shows the

plot for the Peak-Signal-to-Noise-Ratio Vs the Amplifica-

tion factor α. From Fig. 3 we can observe that as the am-

plification factor is increased, the PSNR ratio of the videos

rapidly decreases, indicating increasing levels of artifacts

being added into the video as the value of α increases. As a

result, while testing our approach we use α = 10 for all the

testing videos, whereas, the training dataset is augmented

with motion magnified videos with α = 5, 10, 15.

3.2. Removing Frames with low Textural Variance

Since micro-expressions are very subtle and last for less

than 0.5 seconds, we are only concerned about frames that

have high variance in terms of movement of facial mus-

cles [23]. Therefore, it is crucial to get rid off the frames

that have very small textural variance.

Similar to [23], in this paper we remove the frames with

low textural variance by computing the texture map of indi-

vidual frames using the Local Binary Patterns (LBP)[30] of

individual frames in the video. This texture map is then

divided into 6 x 6 blocks. For each block, we compute

the frequency to understand the pixel change in the tem-

poral domain and compare the values in the sequence of

video frames. Furthermore, we obtain the frequency of each

block using 3DFFT with a sliding temporal window size

of N which is 61. We mask a sliding window of length N

in the current frame, to compute the frequency of frames
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Figure 1. Overall Architecture of our approach.

Figure 2. Motion Magnification of an image

present inside the sliding window. We determine the fre-

quency values for the i-th interval on its 36 blocks using

3DFFT. The blocks are represented as (bi1, bi2, ......, bi36).

The frequency value for each block in the i-th interval is

obtained as:

fbij (x, y, z) =

∫ N
2

−N
2

∫

Lb
2

−Lb
2

∫

Wb
2

−Wb
2

Fbij (u, v, q)×

ej2π(us+vy+qz)dvdudq (6)

where (x,y,z) represents the position in the frequency do-

main, Lb represents the height of each block; Wb represents

as the width of each block, where j = 1, 2, 3, ..... 36, in the

5 10 15 20

15

20

25

30 29.41

21.49

17.41

13.9

Amplification factor (α)

P
S
N
R

R
a
ti
o

Figure 3. Amplification factor (α) vs PSNR Ratio for video motion

magnification

j-th video interval of block bij .

In the micro-expression frames, not all pixel represents

the high-frequency values. As a result, we employ a high-

frequency band filter (HBF) to remove the low-frequency

pixels in the sequence of video frames, such that the re-

moval of these unchanged pixel values helps in getting rid

off the insignificant pixel values. The high-frequency filter

Hbij is expressed as in Eq.7, where Do is the threshold value

equal to 30.
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Figure 4. Intensity of Facial Micro-Expression vs Frame Number.

Hbij (x, y, z) =

{

1,
√

x2 + y2 + z2 ≥ Do.

0,
√

x2 + y2 + z2 < Do

(7)

We filter the video blocks in the frequency domain by

using the information from the 3DFFT and high-frequency

filter as shown in Eq. 8.

Gbij (x, y, z) = fbij (x, y, z)×Hbij (x, y, z) (8)

Furthermore, we sum the intensity values Gbij for all 36

blocks in the i-th video interval by the Eq. 9.

Ai =
36
∑

j=1

N
∑

x=1

Lb
∑

y=1

Wb
∑

z=1

Gbij (x, y, z) (9)

where Ai represents the intensity values of each frame

of the i-th interval of sequence of video frames. It helps in

understanding the changes in the intensity of facial micro-

expressions.

Knowing the intensity values for the sequence of video

frames from equation 8, we compute the mean and standard

deviation for the micro-expression frames and using these

values we get the probability values for each frame. We set

a threshold value of 0.5 such that if the probability value of a

frame is above 0.5, we consider the frame to have high tex-

ture variance and the frames which have probability value

lesser than 0.5 are removed. The Fig. 4 shows the change

in the intensity value of facial micro-expression in a video.

3.3. Facial Landmark Alignment

The input faces can be at a different angle from the cam-

era and can be of different poses. Therefore, in order to

Figure 5. EAI representation for the sequence of frames.

compute the Emotion Avatar Image (EAI), it is essential to

align the faces with a reference face. In our approach we

chose the first frame of the video to be the reference frame.

We use the OpenFace software [31] to register the facial im-

ages. OpenFace computes the 68 facial landmark points on

the facial image and computes an affine transformation to

register the face with respect to the reference frame.

3.4. Emotion Avatar Image

The Emotion Avatar Image (EAI) [27] is a novel method

where video sequences are condensed into a single image

representation. The technique is simple but effective for

facial expression recognition. Here, we use the same ap-

proach for facial micro-expression recognition. After reg-

istering the individual facial images, the sequence of video

frames is averaged out into a single image. The EAI repre-

sentation registers the facial features at exact locations and

maintains the nonrigid facial muscle movement. Therefore,

EAI representation helps in highlighting the facial micro-

expression in an image. The advantage of using avatar im-

age representation is that it reduces the noise variance by a

factor of N, where N is the number of frames in the video.

The EAI representation for a sequence of frames is shown

in Fig. 5. In Fig. 5 the regions of the face that are blurry

indicate facial muscle movement.

3.5. Deep Convolutional Neural Network

We use Convolutional Neural Network, to perform fea-

ture extraction. In our approach, we employ the Resnet 34

architecture [32]. The residual network architecture takes

an image size of 224x224 and batch normalization is carried

out before each convolution layer for faster training conver-

gence. Rectified Linear Unit (ReLu) activation is also used

after each convolutional layer.

432516



Network Learning rate Momentum Weight Decay Optimizer

Resnet 34 10−3 0.9 5 x 10−4 SGD

Table 1. Parameters for the Network

Emotion Class SMIC CASME II SAMM Combined

Negative 70 88 92 250

Positive 51 32 26 109

Surprise 43 25 15 83

Total 164 145 133 442

Table 2. Summary of the Data Distribution samples.

Table 1 shows the hyper parameters used for training the

CNN. We used a mini-batch size of 128 and during every

epoch, the training data are randomly flipped and shuffled.

The learning rate is decreased after every 5 epochs by a fac-

tor of 2. We perform Leave-One-Subject-Out Cross Valida-

tion (LOSO-CV) to ensure that each subject is validated and

the classification of facial micro-expressions is performed

on the emotion avatar image.

4. Experimental Setup and Results

We evaluated our approach on three spontaneous facial

micro-expression datasets: SMIC [33], CASME II [34], and

SAMM [35] using a Leave-One-Subject-Out Cross Valida-

tion approach (LOSO-CV) as shown in Table 2. The frame-

work of our approach is implemented using two NVIDIA

GTX 1080Ti GPUs.

4.1. Datasets

4.1.1 SMIC

The SMIC dataset consists of three classes of emotion:

Negative (70), Positive (51) and Surprise (43) videos, a to-

tal of 164 videos with a frame rate of 100fps. The SMIC

dataset consists of 16 subjects.

4.1.2 CASME II

The CASME II dataset consists of seven categories of ex-

pressions: other (99), disgust (63), happiness (32), repres-

sion (27), surprise (25), sadness (7) and fear (2) in total of

255 videos with a frame rate of 200fps. In our research, we

are interested in three classes of expressions: Negative (Dis-

gust and Repression), Positive (Happiness) and Surprise.

We chose the three classes based on the rules described [36].

The CASME II dataset consists 24 subjects.

4.1.3 SAMM

The Spontaneous Actions and Micro-Expression (SAMM)

dataset consists of eight expressions: anger (57), happiness

(26), disgust (9), other (26), fear (8), surprise (15), con-

tempt (12) and sadness (6), in total consists of 159 videos.

The frame rate of SAMM dataset is 200fps. In our research,

we are interested in three classes of expressions: Nega-

tive (Anger, Sadness, Contempt, Fear and Disgust), Positive

(Happiness) and Surprise. We chose the three classes based

on the rules described [36]. The SAMM dataset consists 28

subjects.

4.1.4 Composite Database Evaluation

The datasets (SMIC, CASME II, and SAMM) are combined

into a composite dataset, based on the three emotion classes.

In the composite dataset, there are in total of 68 subjects

consisting of 442 videos as shown in Table 3. This dataset

portrays a real-life scenario consisting of subjects from dif-

ferent ethnicity and gender. The combined datasets consists

of bias in the ethnicity based on color of skin and also ex-

pression type.

4.2. Evaluation Metrics

The class distributions of these datasets and the compos-

ite dataset are imbalanced with respect to the number of

classes. Therefore, we cannot use accuracy as the perfor-

mance metric to gauge our approach. To overcome such

imbalance, we use Unweighted F-1 (UF1) score and Un-

weighted Average Recall (UAR).

• Unweighted F-1 score (UF1): F1 score provides equal

emphasis on each class. From the confusion matrix,

we compute the True Positives (TP), False Positives

(FP) and False Negatives (FN) for each class (C). The

balanced F-1 score is obtained by taking the average

for each class F1 scores:

TPc =

k
∑

i=1

TP (i)
c (10)

FPc =

k
∑

i=1

FP (i)
c (11)

FNc =

k
∑

i=1

FN (i)
c (12)

F1c =
2× TPc

2× TPc + FPc + FNc

(13)

UF1 =
F1c
C

, (14)
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Method
Combined Dataset SMIC CASME II SAMM

UAR UF1 UAR UF1 UAR UF1 UAR UF1

LBP-TOP 0.5785 0.5882 0.5280 0.2000 0.7429 0.7026 0.4102 0.3954

Bi-WOOF - - - 0.6110 - 0.7902 - 0.3970

OFF-ApexNet 0.7033 0.7104 - 0.6817 - 0.8697 - 0.5409

Our Approach 0.7355 0.7603 0.7621 0.7451 0.8065 0.8280 0.6815 0.7056

Table 3. Comparison of our approach with the state-of-the-art approaches on the three datasets

Class
SMIC

Negative Positive Surprise

Negative 65 2 3

Positive 11 37 3

Surprise 17 1 25

Table 4. Confusion matrix for the SMIC dataset.

Class
CASME II

Negative Positive Surprise

Negative 84 2 2

Positive 10 20 2

Surprise 4 0 21

Table 5. Confusion matrix for the CASME II dataset.

Class
SAMM

Negative Positive Surprise

Negative 85 3 4

Positive 8 17 1

Surprise 6 2 7

Table 6. Confusion matrix for the SAMM dataset.

• Unweighted Average Recall (UAR): It is known as bal-

anced accuracy. Here Accc refers to the accuracy per

class and nc refers to the number of items in the class.

UAR =
1

C

∑

Accc, (15)

where Accc = TPc

nc

4.3. Experimental Results

Table 3 shows the comparison between the current state-

of-the-art approaches and our proposed approach using the

Leave-One-Subject-Out Cross Validation (LOSO-CV) ap-

proach. As a measure of robustness and to handle the class

imbalances of the datasets, the performance, and the results

are quantified using the balanced metrics: Unweighted F1

score (UF1) and Unweighted Average Recall (UAR). Our

proposed approach outperforms the state-of-the-art meth-

ods by a huge percentage. The proposed method for data

augmentation along with the motion magnified avatar im-

ages improves the overall performance of combined dataset

and on the individual datasets. The results of SMIC and

SAMM datasets of our approach are better than the state-

of-the-art methods. This indicates that the addition of data

augmented motion magnified avatar images to a class im-

balance dataset helps increase the classification accuracy.

Table 4, 5, 6 shows the confusion matrix for the datasets.

4.3.1 Cross-Dataset Evaluation

To verify the robustness of our approach and its generaliz-

ability to learn the features from different environments and

subjects, we use cross-dataset evaluation on the three pub-

licly available Facial micro-expressions dataset.

Table 7 shows the robustness of our approach. We use

the same approach as mentioned in the technical approach

in section 3. We evaluate our approach on cross-datasets us-

ing Leave-One-Subject-Out Cross Validation (LOSO-CV)

method. The table compares the performance of our ap-

proach on the cross-dataset environment where we train it

on one dataset and test it on an other dataset. The results

from the cross-dataset evaluation show that the approach is

better in generalizing over the large number of subjects.

5. Conclusions

In this paper, we use motion magnified emotion

avatar images to highlight the movement of facial micro-

expression on the face. The motion magnification helps

exaggerate the micro-expression in the avatar image which

helps the CNN to classify them into three different classes

(Negative, Positive and Surprise). The method is tested on

the combined datasets and on individual datasets (SMIC,

CASME II, and SAMM) using Leave-One-Subject-Out

Cross Validation approach (LOSO-CV). The results from

our proposed approach outperforms the current state-of-the-
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Training Dataset

Testing Dataset

CASME II SMIC SAMM

UAR UF1 UAR UF1 UAR UF1

CASME II - - 0.6684 0.6770 0.6506 0.6595

SMIC 0.6213 0.6442 - - 0.6076 0.6223

SAMM 0.6044 0.6210 0.5846 0.5924 - -

Table 7. Cross-Dataset Evaluation for three Facial Micro-Expression Datasets.

art approaches on the UF1 and UAR metrics. We also per-

form a cross-dataset evaluation of the three publicly avail-

able datasets to generalize our approach. The analysis of fa-

cial micro-expressions plays a significant role in psycholog-

ical therapy and the treatment of diseases like schizophrenia

and autism. Therefore, these micro-expressions can be used

for diverse medical applications.
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